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Optimum Design of a Multiple-Active-Bridge

DC-DC Converter for Smart Transformer
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Abstract—The modular Smart Transformer (ST) is composed
by several basic converters rated for lower voltage and power.
In this paper the quadruple active bridge (QAB) is used as
the basic block for the modular ST. In this application, the
efficiency and cost are the most important design parameters.
Therefore, the paper focus on the design of the converter, with the
aim to optimize its efficiency, taking the cost into consideration.
To do so, the losses of all components are carefully modeled
and a computer-aided design is used, where an algorithm to
calculate the losses and cost is developed, allowing to perform
multi-objective optimization. Additionally, Silicon IGBTs and
Silicon Carbide MOSFETs are considered for the design and
the performance of the converter using both semiconductors
technology is compared. Experimental results obtained for the
optimized 20 kW QAB converter has shown an efficiency of
97.5%.

Index Terms—Dc-dc converter, reliability, high efficiency,
silicon-carbide devices, smart transformer.

I. INTRODUCTION

Over the past years, many researches have been focused

on efficiency improvement of dc-dc converters and several

design optimization methods and power converter topologies

have been discussed [1]–[9]. Among the most investigated

topologies, the Dual Active Bridge (DAB) converter [10],

composed of two active bridges connected through a high

frequency transformer, is highlighted as a high performance

solution, because of its soft-switching feature and high power

density. Therefore, this converter has been widely used in

application with different power and voltage levels, mainly

those that required high efficiency.

In Smart Transformer (ST) application, the DAB converter

became a standard solution for the dc-dc stage, mainly because

of its simple power flow control [1]. However, not only the

efficiency, but also the cost plays a very important role during

the design and the topologies choice for the system imple-

mentation. Recent investigations have shown the economic

advantages of the Multiple Active Bridge (MAB) over the

DAB, when applied to ST [11], [12]. The MAB is an extension

of the DAB converter, where more bridges are coupled to

the same multiwinding high frequency transformer (HFT).

Consequently, employing the MAB instead the DAB in ST,

the total number of HFT, LV cells, as well as auxiliary compo-

nents (communication system and auxiliary power supply) are

reduced, resulting in lower cost. In addition to that, the MAB
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Figure 1. (a) Modular ST architecture using the QAB converter as a basic
module of the dcdc stage. (b) QAB converter topology.

operates similarly to the DAB, preserving the same advantages

and then high performance is also expected.

On the other hand, most of the publications related to this

converter were focused on the power control between the

bridges, and little attention was paid to the design and effi-

ciency improvement. In [13], the design of a MAB converter

based on three active bridges (TAB) is presented, but a peak

efficiency of only 91.5% was obtained for the built converter.

Similarly, a MAB converter is designed and implemented in

[14], [15], where a maximum efficiency of 92% is reported.

The high performance of the MAB converter has not yet been

demonstrated in literature.

In this context, this paper presents the design of a MAB con-

verters, with the aim to optimize the efficiency, but considering

the cost of the converter. To do so, a computer-aided design

is used, where the parameters are properly selected and the

losses on the main power components are carefully calculated.

Additionally, Silicon IGBTs (Si-IGBT) and Silicon Carbide

MOSFETs (SiC-MOSFETS) are considered in the design, in

order to reduce the switching and conduction losses and verify

the performance of the converter using different semiconduc-

tors technology. Furthermore, the cost of the components are

considered, allowing to perform a multi-objective (efficiency

and cost) optimization.

The economical advantages of the MAB in ST application

was proved in [12], and the main goal of this paper is to

validate theoretically and experimentally its high performance

in terms of efficiency, demonstrating the feasibility of the

MAB in this application.
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The paper is divided as follows: in section II, the ST concept

is briefly introduced, where its characteristics and requirements

used for the MAB designed is presented. Then, the MAB

converter is introduced in Section III, where its main equations

used on the design are provided. In section IV, the design

methodology is presented, where the components are selected,

the losses are calculated and theoretical efficiency is estimated.

Finally, experiments results for building prototype is presented,

where an efficiency of 97.5% is demonstrated.

II. MODULAR SMART TRANSFORMER ARCHITECTURE

Smart Transformer (ST) is a power electronics-based system

usually composed of three conversion stages (AC-DC, DC-

DC and DC-AC) with advanced control and communication

functionality [1], [2]. Because of its high control performance,

it became a promising system to solve the current problems

of the modern distribution system, and its advantages and

benefits in distribution system have been discussed in [1],

[2]. Different architectures can be used to implement the ST

[1], but the modular one has shown more advantages, because

it enables the fault tolerance. Using this approach, the dc-dc

stage is composed by several basic dc-dc converters rated for

low power and low voltage. In this work, the MAB converter is

employed as a basic cell, where four bridges (named quadruple

active bridge - QAB) are used, as shown in Fig. 1. This

converter was employed in ST application in [16], focusing on

the comparison of different modulation strategies. This study

has shown that the QAB converter presents higher performance

when the Phase Shift Modulation (PSM) scheme is used. On

the other hand, only an initial studies was presented in [16],

without substantial results. In this context, the current work

focus on the optimum multi-objective design of the QAB

converter, with the aim to maximize efficiency and minimize

cost.

The general block diagram of the MAB is shown in Fig.

2 (a), where the MV cells and LV cells are highlighted.

The number of MV cells (NMV (cell)) and LV cells (NLV (cell))

of the MAB converter can be freely determined and when

NMV (cell) = NLV (cell) the converter is symmetrically configured

and the power of the individual cells are equal. This example

is depicted in Fig. 2 (b) for the QAB converter, in which

NMV (cell) = NLV (cell) = 2. When NMV (cell) 6= NLV (cell), on the

other hand, the converter is then configured asymmetrically

and the power rating of the MV cells differs from the power

level of the LV cells. This case is exemplified in Fig. 2 (b), in

which NMV (cell) = 3, NLV (cell) = 1 and the power level of the

MV cells is given by PQAB/NMV (cell), while the power rating

of the LV cells is PQAB/NLV (cell), where PQAB is the total power

of the converter. Consequently, the number of MV cells and

LV cells must be defined, before to analyze and design the

converter.

According to [12], if properly designed, the MAB converter

should perform similarly regardless the number of cells, im-

plying in equivalent efficiency. However, the cost is highly

affected by the number of cells and reducing them implies in

cost saving. Still according to [12], it is very advantageous to

select three bridges on the MV side and one on the LV side

Figure 2. Block diagram of the MAB converter: (a) generalized MAB
converter, (b) asymmetrical configuration, (c) asymmetrical configuration of
the QAB converter.

Table I
SPECIFICATION OF THE GRID AND QAB CONVERTER

Rated Power MVAC LVAC Grid frequency

500 kVA 10 kV 400 V 50 Hz

QAB Converter Specification

Rated Power Input Voltage Output Voltage Switching freq.

20 kW 800 V 700 V 20 kHz

(see. Fig. 1), because the total number of HFT and LV cells

are reduced, while the semiconductors with lower blocking

voltage can be used in the MV cells [12]. For this reason the

QAB converter with NMV (cell) = 3 and NLV (cell) = 1 is adopted.

A typical ST specification for distribution system is pre-

sented in Table I, as well as the specification of the QAB

converter, and the QAB converter design is carried out based

on these specifications.

III. OPERATION PRINCIPLE OF THE MAB CONVERTER

The QAB is composed of four active bridges and for the

analysis, each of them is denoted by the letters a, b, c and d.

The elements of the bridges have sub-index i = {a,b,c,d} to

indicate the bridge the element belongs to. Fig. 3 (b) shows

the block diagram of the converter, where the main parameters

(voltage, current and inductance) of each bridge are illustrated

with its respective sub-index. To analyze the converter, an

equivalent circuit based on the Y-model and depicted in Fig.

3 (b) is used, in which the bridges are replaced by rectangular

voltage sources (va, vb, vc and vd). The parameters of the

equivalent circuit shown in Fig. 3 (b) are reflected to the LV

side and they are determined using the original parameters

shown in Fig. 1 and the transformer turns ratio n. The reflected

parameters of the equivalent circuit are calculated by (1),

where n is the number of turns of the LV side in relation

to the MV side, i.e. n = nLV/nMV .
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Figure 3. Model of the QAB converter and main waveforms of the QAB converter using the PSM.
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The voltage at the central point vx and the current slope

of each inductor are given by (2) and (3), respectively, where

k = {a,b,c,d}.

To modulate the converter, the Phase-Shift Modulation

(PSM) strategy is employed. Using this modulation scheme,

rectangular voltages va, vb, vc and vd with phase shift ϕa,

ϕb, ϕc and ϕd , respectively, and constant switching frequency

fs are applied to the transformer. The power is controlled

by the phase difference among the bridges and it can be

generally described in (4), where, i= a,b,c,d and k = a,b,c,d,

according to [17], [18]. The main waveform of the PSM is

shown in Fig. 3 (c).

vx =
va + vb + vc + vd

4
(2)

diLk

dt
=

(vk − vx)

Leq

(3)

Pik =
ViVk

2π fsLeqn
ϕik

(

1−
|ϕik|

π

)

, ϕik = ϕi −ϕk (4)

The PSM is characterized by ZVS turn-on, but this features

depends on the input and output voltages relation and also on

the load. In this application, the input voltage of the QAB (all

the three cells) is regulated by the first stage of the ST, i.e.

the MV rectifier, while the QAB controls the output voltage.

As the input and output voltage are considered constant,

the converter can be properly designed to work with ZVS

operation for its entire range of operation. Consequently, this

scheme offers several advantages for the converter operation.

In ST application, equal power sharing is normally assumed

(i.e. power balanced condition), and the MV cells operate

with the same phase shift angle. In this condition, there is

no circulating power among the MV cells, but only power

exchange between the MV and LV sides. Consequently, the

Figure 4. Current and voltage waveforms on the (a) LV side semiconductors
(iS1a, vS1a, iS2a, vS2a) and (b) MV semiconductors (iS1b, vS1b, iS2b, vS2b) of
the QAB converter. Diode and channel refer to the power device (MOSFET
and/or IGBT).

equation (4) can simplified to (5), where ϕ is the phase-shift

angle between the MV cells and LV cell.

Po =
VMVL

2π fsnLeq

ϕnom

(

1−
|ϕnom|

π

)

(5)

In this equation, Leq is the equivalent inductance seen by

the LV side, and it can be calculated in terms of the LV

inductance and MV inductance by equation (6). Assuming

a nominal power, nominal phase-shift angle and voltage, the

required equivalent inductance can be calculated then by (7).

This can be implemented physically on the MV side and/or

LV side, but the relation shown in (6) must be satisfied.

Leq = La +
Lb +Lc +Ld

3n2
(6)

Leq =
VMVL

2π fsnPo

ϕnom

(

1−
|ϕnom|

π

)

(7)

As can be noticed in (5), the input and output voltages

are constant, as well as the switching frequency ( fs); hence,

the power transference depends only the equivalent inductance

and the nominal phase-shift angle. The choice of the nominal

phase-shift is critical and further discussion is presented as

follows.

The voltage and current waveforms on the semiconductors

of the MV side bridge and LV bridge of the QAB converter are

depicted in Fig. 4. If properly designed, the current and voltage
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Figure 5. (a) The peak current on the LV inductor and MV inductor in
function of the nominal designed phase-shift angle and (b) the same current
in function of the output current, for different designed phase-shift angle.

waveforms on the semiconductors will be same as depicted in

Fig. 4. In this figure, the peak current on the LV side inductor

(ILPK(LV )
) is calculated by (8).

ILPK(LV )
=

VL −
√

V 2
L −8Leq fsnVLIo

4Leq fs

(8)

iS1a,rms =

√

√

√

√

√

1

Ts

Ts∫

0

iS1a
2 (t)dt (9)

iS1a,avg =
1

Ts

Ts∫

0

iS1a (t)dt (10)

Fig. 5 (a) shows the variation of the peak current on the

LV and MV side inductors, according to the nominal phase

shift angle chosen on the design, while the Fig. 5 (b) shows

the variation of the same current in function of the load for

different designed ϕ. As can be noticed, higher ϕ implies in

higher peak current, and consequently rms current and losses

on the semiconductors, inductors and transformer. It means,

more reactive power flowing on the converter [10]. Then, a

range between 30 degrees and 50 degrees is desired and in

this work ϕnom = 35◦ is selected.

To calculate the current effort and consequently the losses

on the semiconductors and transformer the equations (9) and

(10) are used, considering the current waveforms presented in

Fig. 4 and positive power flow, i.e. from MV to LV side. As

a result, the average and rms current on the semiconductor of

the MV cell are calculated by (11) to (14).

iD1b(avg)
=

ILPK(LV )

3n

ϕ

8π
(11)

iD1b(rms)
=

ILPK(LV )

3n

√

ϕ

12π
(12)

iS1b(avg)
=

ILPK(LV )

6n

(

1−
3ϕ

4π

)

(13)

iS1b(rms)
=

ILPK(LV )

3n

√

1

2

(

1−
5ϕ

12π

)

(14)

Figure 6. The (a) rms and (b) average currents on the MV side in function
of the nominal designed phase-shift angle.

Similarly, the average and rms currents on the semiconduc-

tor of the LV cell are calculated by (15) to (18).

iD1a(avg)
=

ILPK(LV )

2

(

1−
3ϕ

4π

)

(15)

iD1a(rms)
= ILPK(LV )

√

1

2

(

1−
5ϕ

12π

)

(16)

iS1a(avg)
= ILPK(LV )

ϕ

8π
(17)

iS1a(rms)
= ILPK(LV )

√

ϕ

12π
(18)

The rms current on the MV and LV inductors are calculated

by

iL1a(rms)
= ILPK(LV )

√

1−
2ϕ

3π
(19)

iL1b(rms)
=

ILPK(LV )

3n

√

1−
2ϕ

3π
. (20)

Figs. 6 and 7 show the rms and average currents on

the semiconductors (intrinsic body diode and channel) and

inductors on the LV side and MV side, respectively, in function

of the designed ϕ. The current efforts on the semiconductors

and inductors, and consequently losses, increases with ϕ.

Furthermore, when the power flows from the MV to the LV,

most of the current flows through the channel of the MV

side semiconductors, whereas it flows mostly through the body

diode on the LV side. Therefore, it is very important to select

a power semiconductor for the LV side with low forward drop

voltage for the body diode.

IV. LOSSES ANALYSIS AND DESIGN OF THE QAB

CONVERTER

As mentioned before, the losses in the main components of

the QAB must be carefully computed in function of the main

converter parameters, with the aim of properly selecting these

parameter, minimizing the losses.
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Figure 7. The (a) rms and (b) average currents on the LV side in function of
the nominal designed phase-shift angle.

Table II
SPECIFICATION OF THE SEMICONDUCTORS CONSIDERED IN THE DESIGN

SiC-MOSFET / 1.2 kV

Name Reference I Rds(on)(@150C) VF Eo f f

SIC-2 C2M0040120D 30 A 84mΩ 3.3 V 0.3 mJ

SIC-2 C2M0040120D 40 A 84mΩ 3.3 V 0.3 mJ

SIC-3 C2M0025120D 90 A 43mΩ 3.3 V 0.3 mJ

Si-IGBT / 1.2 kV

Name Reference I VCE(on)(@150C) VF Eo f f

IGBT-1 IHW40N120R3 40 A 2.4V 1.3 V 3.1 mJ

IGBT-2 IHW40N120R3 40 A 1.9V 1.3 V 3.1 mJ

IGBT-3 IHW40N120R3 40 A 2.4V 1.3 V 2.03 mJ

A. Semiconductors

An important feature of the modular ST architecture is

possibility to use lower blocking voltage semiconductors,

implying in a wide variety of device choice during the design.

From the converter’s specification shown in Table I, 1.2 kV

semiconductors can be employed in both sides of the converter,

benefiting both efficiency and cost.

In order to take advantage of the high performance of the

new SiC devices, SiC-MOSFETs of 1.2 kV voltage rating

are considered on the design. These devices are characterized

by a very low switching energy and a very low RDS(on).

Although the converter is supposed to operate with ZVS, this

characteristic is achieved only during the turn-on of the switch,

while it turns-off under hard switching. Therefore, by using

SiC-MOSFETs, the QAB converter will not only take the

advantage of their low RDS(on), reducing the conduction losses

considerably, but also the low switching energy, reducing the

turn-off losses. Besides that, standard Si-IGBT of 1.2 kV are

also taken into consideration during the converter’s design,

in order to compare the performance of the different devices

technologies in this application. The list of the considered

semiconductors is presented in Table II. As can be noticed,

three different SiC-MOSFETs devices and three different Si-

IGBTs are considered on the design. Since different devices

can be used on the LV and MV sides, it results in 36

combinations and then 36 designs iterations.

The conduction losses of the MOSFETs can be calculated

by (21), where the on-resistance (Rds(on)) is function of the

drain-source current (ids), junction temperature (TJ) and gate

voltage (Vgs). Assuming a constant junction temperature of

Figure 8. Power dissipation on different semiconductors for the MV and LV
side of the QAB converter, for both (direct (a) and reverse (b)) power flow
direction.

100◦C and a constant gate voltage, the equation is simplified

to (22). Similarly, the conduction losses on the diode and IGBT

are calculated by (23), where Vf is the forward drop voltage

(for diode case) or collector-emitter voltage (for IGBT case),

while i f is the current that flows on the device. The equation

can also be simplified to (24).

PMOS(cond) =
1

T

∫ T

0
Rds(on) (ids (t) ,TJ ,Vgs) · ids

2 (t)dt (21)

PMOS(cond) = Rds(on) · I
2
S1(rms) (22)

PIGBT (cond) =
1

T

∫ T

0
Vf (i f (t) ,TJ ,Vgs) ·i f (t)dt (23)

PIGBT (cond) =Vf · I f (avg)+R f · I
2
f (rms) (24)

The switching losses can be generally calculated by (25),

where Nsw(on) and Nsw(o f f ) are the number of turn-on and turn-

off commutations, respectively, during the time interval Ts. Rg

is the gate resistance. As the converter switches always with

a constant voltage and it is assumed a constant temperature

junction, as well as the Vgs and Rg. Because of the ZVS

operation, the turn-on losses are neglected, and a simplified

equation can be written as presented in (26). The equation as

is written in (25) is suitable for a computer implementation,

because it is already discretized.

P(sw) =
1

T











Nsw(on)

∑
n=1

Eon (Vce, Id ,TJ ,Vgs,Rg)+

Nsw(o f f )

∑
n=1

Eo f f (Vce, Id ,TJ ,Vgs,Rg)











(25)

P(sw) =
1

T

(

Nsw(o f f )

∑
n=1

Eo f f (Id)

)

= Eo f f · fs (26)

Replacing the equations (14) to (18) in (22) and using the

parameters of Table II, the conduction losses are calculated.

Likewise, the switching losses are calculated using the param-

eters of Tables I and II in equation (26).

A computer-aided algorithm is used to calculate the semi-

conductors losses and further details are given in the next

section. To verify the losses distribution and performance

for different technologies, three devices were selected (SiC-2,
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Figure 9. (a) Rms current on the output dc-link capacitor bank, (b) power
dissipated on the capacitors dc-link, according to number of parallel capaci-
tors.

SiC-3 and IGBT-1) and their losses are calculated for direct

and reverse power flow; the result is illustrated in Fig. 8.

Despite of the soft-switching turn-on, the turn-off losses of

the QAB are very relevant, mainly when IGBT are employed,

because of the high switching energy compared to the SiC-

MOSFETS. When the SiC-MOSFET is employed, the current

flows through the channel of the LV side semiconductors,

instead the body diode, because the gate signal is applied,

providing a lower impedance path to the current. Conse-

quently, the losses are reduced even further when compared

to the Si-IGBT. For these reason, the diode losses on the SiC-

MOSFETs devices are not relevant in Fig. 8. As expected, the

performance of the QAB converter is superior when the SiC-3

is used in both sides, regardless the power flow direction.

B. Output DC-Link Capacitor

The rms current through the output capacitor is calculated

by (27).

ICo(rms)
=

√

ILPK(LV )
2

(

1−
2ϕ

3π

)

−

(

VL

Rload

)2

(27)

For the dc-link capacitor, the aluminum electrolytic capac-

itor from EPCOS (long-life series), with 1000µF capacitance

and voltage rating of 450 V is used. This type of capacitor

is chosen because of its high energy storage density. The

capacitor has an equivalent-series resistance of RESR = 55mΩ.

Because of the voltage rating of the capacitors, two devices

needs to be connected in series. The losses on this component

are calculated according to

PCo = 2 ·RESR · I
2
Co(rms). (28)

The rms current on the output dc-link in function of the

designed ϕ and also the losses on the LV dc-link capacitor

in function of the designed ϕ for different number of parallel

capacitors are illustrated in Fig. 9. Parallel capacitors are con-

sidered to reduce the current effort, losses and also to provide

a relatively high energy storage on the dc-link, guaranteeing

the decoupling between both ac sides.

C. HFT Design

To design the HFT, different core shapes as well as winding

construction were considered, as presented in Fig. 10. For the

Figure 10. Different HFT implementations: (a) U-shape core with concentric
winding, (b) U-shape core with sectioned windings, (c) E-shape core.

Table III
TRANSFORMER SPECIFICATION USED FOR ITS IMPLEMENTATION

parameters UU93 concentric UU93 Sectioned EE-80

Core losses 105 W 85 W 60 W
Wire losses 340 W 98 W 84 W

Leakage ind (LV) 145µH 140µH 40.7µH

Winding res (LV) 0.146Ω 0.064Ω 0.08Ω
Leakage ind (MV 1) 4.17µH 70.7µH 16.5µH

Winding res (MV 1) 0.046Ω 0.047Ω 0.072Ω
Leakage ind (MV 2) 2.3µH 40.3µH 13.5µH

Winding res (MV 2) 0.036Ω 0.037Ω 0.059Ω
Leakage ind (MV 3) 4.5µH 73.17µH 15µH

Winding res (MV 3) 0.049Ω 0.053Ω 0.065Ω
Mag inductance 4.46mH 4.2mH 3.2mH

Implemented HFT

Core 3 parallel cores - E 80/38/20
N◦ of turns (LV) nLV = 21
N◦ of turns (MV) nMV = 24
wires - (LV) 2000 x AWG44
wires - (MV) 90 x AWG32

U-shape core, two different winding methods were considered

and investigated experimentally: concentric and sectioned. In

the concentric winding, the MV coils are wound one over the

other (see Fig. 10 (a)), whereas in the sectioned, the MV coils

are separated and wound separately, as shown in Fig. 10 (b).

An algorithm was developed to assist the HFT design. In

this algorithm, the basic design is performed according to [19],

where the number of turns is calculated, wires are selected

and so on. The feasibility of implementation is verified by the

window utilization factor. Then, the core losses, wire losses

and temperature rise are estimated. For the wire losses, the

skin and proximity effect are considered additionally to the

dc losses. To avoid the skin effect, litz wire is used. Losses

caused by proximity effect are estimated based on [20]. For the

core losses, the generalized Steinmetz equation [21] is used.

Finally, the temperature is estimated according to [19] under

the assumption of natural convection cooling.

Three transformers implementations illustrated in Fig. 10

were built and tested experimentally and the main parameters

and losses were measured. The results are presented in Table

III. Concerning the U-shape core, the sectioned implementa-

tion presented much lower wire losses, because of its lower

proximity effect losses compared to the concentric. On the

other hand, the sectioned implementation presented a very high

leakage inductance, whereas the concentric is lower. With the

E-shape implementation, it is possible to reach reduced wire

losses with lower leakage inductance. However, it is difficult

to achieve high isolation voltage between the LV and MV
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Figure 11. Flowchart of the implemented algorithm used for the QAB design.

side, as desired by the ST application. Considering these three

constrains, the E-shape core is selected to implement the HFT

of the QAB converter.

D. Final Converter Design

In order to find a optimum trade-off between efficiency and

cost of the QAB converter, a computer-aided based design was

used and the flowchart of the developed algorithm is shown

in Fig. 11. The precise cost estimation is more difficult to

be obtained, because it is highly dependent on the market

parameters, that can change the price over the time, like:

distributor, quantity acquired, etc. As a matter of comparison,

the cost used in this algorithm for the semiconductors were

obtained directly from the devices manufactures, i.e. Infineon

Technology [22] for the Si-IGBT and Cree Wolfspeed for SiC-

MOSFET [23]. For the capacitor and transformer cost, the

cost were obtained through the well-known distributor Mouser

Electronics [24].

The algorithm starts with the basic design of the converter,

as shown in Section III, where the converter’s parameters are

calculated, like: required inductance, phase-shift angle, current

efforts, etc. Then, it selects the semiconductors and calculate

their losses and cost. At this point, there is an iteration to

calculate the losses and cost for all possible combination

of semiconductors. The next point is the output capacitance

selection, where an iteration is performed to find the proper

number of parallel capacitors according to cost and losses.

Finally, the HFT is designed, as described in the previous

section.

As a result, the theoretical efficiency of the QAB versus its

cost for several designs performed by the algorithm is plotted

in Fig. 12. Three designs are highlighted in this figure: (1)

lowest cost and lowest efficiency; (2) best trade-off between

cost and efficiency; (3) highest efficiency and highest cost. The

semiconductor selected in each of the pointed-out designs is

Figure 12. Theoretical efficiency of the QAB versus its cost for different
designs.

Figure 13. Losses distribution on the main devices for the three designs
highlighted: (a) lowest cost, (b) best cost-efficiency trade-off, (c) highest
efficiency.

shown in Fig. 12, as well. As can be noticed, the lowest cost

and efficiency is obtained when IGBT are employed in both

side of the QAB converter. The device SiC-3 provides the best

performance, because it has the lowest RDS(on), i.e. conduction

losses, and switching losses. However, it is the most expensive

solution. When SiC-2 is used in the MV and SiC-3 on the

LV side of the QAB, the efficiency decreases slightly, but the

cost decreases significantly. Therefore, this design presents

the best trade-off between cost and efficiency. The losses

distribution on the components of the QAB converter for

the three highlighted design are shown in Fig. 13. As can

be reinforced, even operating with ZVS during the turn-on,

the power dissipated during the turn-off is very relevant,

when IGBT is used. Therefore, it is very advantageous and

recommended to use SiC-MOSFETs in this converter.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENTAL

RESULTS

In order to evaluate the converter performance experimen-

tally and verify the presented design procedure, a prototype

was built and tested. The main specifications are shown in

Table I. The details about the converter construction and the

final results are discussed.
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Figure 14. Scheme of the tested prototype, presenting its connection to the
load and the external transformer implementation.

Table IV
SPECIFICATION OF THE IMPLEMENTED INDUCTOR

Parameters values

Core E - 42/21/15

Inductance (LMV ) 35µH

Winding resistance (Rcoil ) 37mΩ

N◦ of turns 25

wires 90 x AWG32

A. Final Prototype Assembly

From the previous design methodology, the QAB converter

presents the best cost for the design 1 and the best cost-benefits

for the design 2, (see Fig. 12). Therefore, both combinations

are used on the construction and test of the prototype, in order

to evaluate experimentally the benefits to use SiC.

As an outcome of the converter’s design, the required

equivalent inductance seen by the LV side is Leq = 95µH,

in which can be implemented in the MV side and/or LV

side, once the relation defined by equation (6) is respected.

The imperfect construction of the transformer causes a de-

viation of the leakage inductance values of the MV side

windings ,i.e. Lbleak
6= Lcleak

6= Ldleak
. To reduce this effect,

external inductors should be used on the MV side, resulting

in L(b,c,d) = L(b,c,d)leak
+Lext . To reach the desired inductance

value, three additional inductors of Lext = 35µH are used in

MV side. The value of Lext was calculated according to the

equation (6), taken into consideration the leakage inductance

of the HFT presented in Table III. The specification used to

implement physically the inductors are presented in Table IV,

as well as the intrinsic measured resistance. These additional

inductors associated to the leakage inductance of the HFT

result in the desired inductance value.

Fig. 14 shows the block diagram of the schematic used

to test the converter. For simplicity’s sake, the converter was

tested with reverse power flow, where a single dc power supply

was used on the LV side and three loads were connected on

the MV side. Fig. 15 shows the picture of the prototype, where

the cells of the CHB associated to the QAB converter (see Fig.

1) is observed, sharing the same cooling system.

Figure 15. Picture of the implemented prototype 20 kW, 800 V to 700 V
QAB converter.

B. Experimental Results

The experimental results were obtained for the converter

operating in steady-state with balanced power, i.e. equal power

processed by the MV cells, as well as for unbalanced condi-

tion, where the main waveforms were saved. Additionally, the

efficiency curve of the QAB is obtained and discussed, when

Si-IGBT (design 1) and SiC-MOSFETs (design 2) are used.

The results are summarized in Fig. 16 and Fig. 19.

Fig. 16 (a) shows the main waveforms of the converter

operating in steady-state, where the currents on the LV cell

(iLa) and MV cells (iLb, iLc, iLd) are presented. From this result,

the balanced operation of the QAB converter is noticed, where

each MV cell processes the same amount of power. Similarly,

Fig. 16 (b) shows voltage and current on the ac side of the

MV bridge (vLb and iLb) and LV bridge (vLa and iLa), where

the phase shift operation of these bridges is observed. These

waveforms are in accordance with the theoretical one shown

in Fig. 3. The commutation of the switches for the LV and

MV sides is presented in Fig. 17 (a) and (b). Fig. 17 (a)

shows the current and voltage on the LV side semiconductor

(s1a), as well as the commutation detail, where soft-switching

operation is verified. As expected, the semiconductor turns

on in ZVS and turns off under hard-switching. However, the

constant current imposed by the inductance during the dead-

time of the switches discharges the output capacitance of the

switch (s1a), while charges the capacitance of the respective

switch of the leg, (i.e. s2a), implying in a commutation losses

reduction (almost ZVS operation). This features is obtained

only when SiC-MOSFETs are used. Likewise, the current and

voltage on the MV side semiconductor (s1b) is illustrated in

17 (b), as well as the commutation details. The same effect

described for s1a is also observed in the MV side switch s1b.

An unbalanced operation was forced, where the MV bridges

were subjected to different power levels. The aim of this test is

to demonstrate the possibility to operate under different power

levels on the MV side, even though it is not an usual operation

condition in ST application. The result is presented in Fig. 18,

where the voltage on the MV cell (vLb) and three MV cell

currents (iLb, iLc, iLd) are presented for balanced (Fig. 18 (a))

and unbalanced (Fig. 18 (b)) power. As can be noticed, the

unbalanced power condition deforms the current shape, but

the soft-switching features is not affected.

Finally, the efficiency curve in function of the output power

is shown in Fig. 19. The efficiency curve was obtained
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Figure 16. Experimental results of the QAB converter: inductor current waveforms on the LV side (iLa) and MV side (iLb, iLc and iLd ) of the QAB converter.

Figure 17. Commutation of the semiconductor including the turn on and turn off detail: (a) LV semicondutor (s1a), (b) MV side semiconductor (s1b).

Figure 18. Main voltage (vLb) and currents (iLb, iLc and iLd ) MV side
waveforms of the QAB obtained experimentally for: (a) balanced and (b)
unbalanced power conditions.

experimentally using the high performance power analyzer

WT1800 from Yokogawa. The power analyzer has an accuracy

of of 0.05% of reading and 0.1% of the full-scale range,

for measuring dc quantities. Although it is considered a very

precise equipment, a small error is expected. Hence, the

error was computed and the Fig. 19 shows the efficiency

curve measure by the efficiency, taking into consideration the

accuracy of the equipment. As can be seen, the converter

has achieved a peak efficiency of 94.28% at a power level

of around 8 kW, when IGBT are used (design 1), while at

nominal load the converter has achieved around 93.4% of

efficiency. For the design 3, where SiC-MOSFETs are used,

the converter has achieved a peak efficiency of 97.5% at a

Figure 19. Efficiency curve in function of the output power of the converter.

power level of around 8.5 kW and its efficiency is 97% at

nominal load. Therefore, the use of SiC-MOSFETs results in

a losses reduction of 57% at 8 kW (increasing the efficiency in

3.3%) and a losses reduction of 56.1% at 12 kW (increasing

the efficiency in 3%). These results confirmed the optimum

design of the converter, as well as the high potentiality of the

SiC technology in this application.
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VI. CONCLUSION

In this paper, the quadruple active bridge is used as a basic

building block to implement a modular smart transformer.

Since the efficiency and cost are very important in this applica-

tion, a multi-objective optimization algorithm was developed.

The losses on the components were modeled and a database

with the cost and electric characteristics of each component

was created. The algorithm combines these parameters in

order to find the optimum point for cost, efficiency and the

best trade-off between cost and efficiency. Besides that, SiC-

MOSFETs and Si-IGBT were considered on the design of the

converter. From these design, a 20 kW prototype was built and

tested. The experimental results have shown an efficiency of

97.5%, which is the highest obtained so far for this kind of

converter. It demonstrates the effectiveness of the proposed

design. Regarding the converter’s performance with differ-

ent semiconductors technology, it was verified that the SiC-

MOSFETs is more advantageous, due to its low energy losses,

almost ZVS operation (during the switch turn-off) and the

conduction of the reverse current through the channel, instead

the diode, reducing the conduction losses. Consequently, the

use of SiC-MOSFETs reduced the converter’s losses in around

57%, compared to the IGBT. These results demonstrate the

feasibility of this technology for such application.

REFERENCES

[1] M. Liserre, G. Buticchi, M. Andresen, G. D. Carne, L. F. Costa, and
Z. X. Zou, “The smart transformer: Impact on the electric grid and
technology challenges,” IEEE Industrial Electronics Magazine, vol. 10,
no. 2, pp. 46–58, Summer 2016.

[2] M. Liserre, M. Andresen, L. Costa, and G. Buticchi, “Power routing
in modular smart transformers: Active thermal control through uneven
loading of cells,” IEEE Industrial Electronics Magazine, vol. 10, no. 3,
pp. 43–53, Fall 2016.

[3] X. She, A. Q. Huang, and R. Burgos, “Review of solid-state transformer
technologies and their application in power distribution systems,” IEEE

Journal of Emerging and Selected Topics in Power Electronics, vol. 1,
no. 3, pp. 186–198, Sept 2013.

[4] J. Wang, A. Q. Huang, W. Sung, Y. Liu, and B. J. Baliga, “Smart grid
technologies,” IEEE Industrial Electronics Magazine, vol. 3, no. 2, pp.
16–23, June 2009.

[5] X. She, X. Yu, F. Wang, and A. Q. Huang, “Design and demonstration of
a 3.6-kv 120-v/10-kva solid-state transformer for smart grid application,”
IEEE Trans on Power Elect, vol. 29, no. 8, pp. 3982–3996, Aug 2014.

[6] L. Costa, G. Buticchi, and M. Liserre, “Highly efficient and reliable
sic-based dc-dc converter for smart transformer,” IEEE Transactions on

Industrial Electronics, vol. PP, no. 99, pp. 1–1, 2017.
[7] R. Yu, G. K. Y. Ho, B. M. H. Pong, B. W. K. Ling, and J. Lam,

“Computer-aided design and optimization of high-efficiency llc series
resonant converter,” IEEE Transactions on Power Electronics, vol. 27,
no. 7, pp. 3243–3256, July 2012.

[8] C. Gammeter, F. Krismer, and J. W. Kolar, “Comprehensive conceptu-
alization, design, and experimental verification of a weight-optimized
all-sic 2 kv/700 v dab for an airborne wind turbine,” IEEE Journal of

Emerging and Selected Topics in Power Electronics, vol. 4, no. 2, pp.
638–656, June 2016.

[9] R. M. Burkart and J. W. Kolar, “Comparative η ρ σ pareto optimization
of si and sic multilevel dual-active-bridge topologies with wide input
voltage range,” IEEE Transactions on Power Electronics, vol. 32, no. 7,
pp. 5258–5270, July 2017.

[10] R. W. A. A. D. Doncker, D. M. Divan, and M. H. Kheraluwala, “A three-
phase soft-switched high-power-density dc/dc converter for high-power
applications,” IEEE Transactions on Industry Applications, vol. 27,
no. 1, pp. 63–73, Jan 1991.

[11] L. Costa, G. Carne, G. Buticchi, and M. Liserre, “Power routing in
modular smart transformers: Active thermal control through uneven
loading of cells,” IEEE Power Electronics Magazine, vol. 10, no. 2,
Summer 2017.

[12] L. F. Costa, F. Hoffmann, G. Buticchi, and M. Liserre, “Comparative
analysis of mab dc-dc converters configurations in modular smart
transformer,” in 8th International Symposium on Power Electronics for

Distributed Generation Systems (PEDG), April 2017.
[13] C. Zhao, S. D. Round, and J. W. Kolar, “An isolated three-port

bidirectional dc-dc converter with decoupled power flow management,”
IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2443–2453,
Sept 2008.

[14] H. Tao, A. Kotsopoulos, J. L. Duarte, and M. A. M. Hendrix, “Family
of multiport bidirectional dc-dc converters,” IEE Proceedings - Electric

Power Applications, vol. 153, no. 3, pp. 451–458, May 2006.
[15] J. L. Duarte, M. Hendrix, and M. G. Simoes, “Three-port bidirectional

converter for hybrid fuel cell systems,” IEEE Transactions on Power

Electronics, vol. 22, no. 2, pp. 480–487, March 2007.
[16] L. F. Costa, G. Buticchi, and M. Liserre, “Highly efficient and reliable

dc-dc converter for smart transformer,” in 2017 IEEE Applied Power

Electronics Conference and Exposition (APEC), March 2017, pp. 184–
190.

[17] S. Falcones, R. Ayyanar, and X. Mao, “A dc-dc multiport-converter-
based solid-state transformer integrating distributed generation and stor-
age,” IEEE Trans on Power Elect, vol. 28, no. 5, pp. 2192–2203, May
2013.

[18] L. F. Costa, G. Buticchi, and M. Liserre, “Quadruple active bridge dc-
dc converter as the basic cell of a modular smart transformer,” in 2016

IEEE Applied Power Electronics Conference and Exposition (APEC),
March 2016, pp. 2449–2456.

[19] M. K. Kazimierczuk, High-Frequency Magnetic Components. Wiley
Publishing, 2009.

[20] W. G. Hurley, E. Gath, and J. G. Breslin, “Optimizing the ac resistance
of multilayer transformer windings with arbitrary current waveforms,”
IEEE Transactions on Power Electronics, vol. 15, no. 2, pp. 369–376,
Mar 2000.

[21] K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, “Accurate
prediction of ferrite core loss with nonsinusoidal waveforms using
only steinmetz parameters,” in Computers in Power Electronics, 2002.

Proceedings. 2002 IEEE Workshop on, June 2002, pp. 36–41.
[22] “Infineon technologies ag,” https://www.infineon.com/, accessed: 2017-

06-12.
[23] “Cree wolfspeed,” http://www.wolfspeed.com/rf, accessed: 2017-06-12.
[24] “Mouser electronics,” http://www.mouser.de/, accessed: 2017-06-12.

Levy Ferreira Costa (S’14) received the B.S.
degree in electrical engineering from the Federal
University of Ceara, Brazil, in 2010 and the M.S.
degree from the Federal University of Santa Cata-
rina, Brazil, in 2013. From 2013 to 2014, he was an
Electrical Design Engineer with Schneider Electric,
Brazil. He is currently working toward the Ph.D.
degree at the Chair of Power Electronics, Christian-
Albrechts-University of Kiel, Germany. His research
interests include dc-dc converters, high-power con-
verter systems and wide-bandgap semiconductors.

Giampaolo Buticchi (S10-M13-SM17) received the
Masters degree in Electronic Engineering in 2009
and the Ph.D degree in Information Technologies
in 2013 from the University of Parma, Italy. In
2012 he was visiting researcher at The University
of Nottingham, UK. Between 2014 and 2017 he
was a post-doctoral researcher at the University of
Kiel, Germany. He is now Associate Professor in
Electrical Engineering at The University of Notting-
ham Ningbo China. His research area is focused
on power electronics for renewable energy systems,

smart transformer fed micro-grids and dc grids for the More Electric Aircraft.
He is author/co-author of more than 130 scientific papers.



0885-8993 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPEL.2018.2799680, IEEE

Transactions on Power Electronics

IEEE TRANSACTION ON POWER ELECTRONICS, VOL. 14, NO. 8, JANUARY 2018 11

Marco Liserre (S’00-M’02-SM’07-F’13) received
the M.Sc. and Ph.D degree in Electrical Engineering
from the Bari Polytechnic, respectively in 1998 and
2002. He has been Associate Professor at Bari Poly-
technic and Professor in reliable power electronics
at Aalborg University (Denmark). He is currently
Full Professor and he holds the Chair of Power
Electronics at Christian-Albrechts-University of Kiel
(Germany). He has published over 280 technical
papers (more than 70 of them in international peer-
reviewed journals), 4 chapters of a book and a book

(Grid Converters for Photovoltaic and Wind Power Systems, ISBN-10: 0-
470-05751-3 IEEE-Wiley, second reprint, also translated in Chinese). These
works have received more than 16000 citations. Marco Liserre is listed in
ISI Thomson report The world’s most influential scientific mindsfrom 2014.
He has been awarded with an ERC Consolidator Grant for the project ’The
Highly Efficient And Reliable smart Transformer (HEART), a new Heart
for the Electric Distribution System. He is member of IAS, PELS, PES

and IES. He is Associate Editor of the IEEE Transactions on Industrial
Electronics, IEEE Industrial Electronics Magazine, IEEE Transactions on
Industrial Informatics, where he is currently Co-Eic, IEEE Transactions on
power electronics and IEEE Journal of Emerging and Selected Topics in Power
Electronics. He has been Founder and Editor-in-Chief of the IEEE Industrial
Electronics Magazine, Founder and the Chairman of the Technical Committee
on Renewable Energy Systems, Co-Chairman of the International Symposium
on Industrial Electronics (ISIE 2010), IES Vice-President responsible of the
publications. He has received the IES 2009 Early Career Award, the IES
2011 Anthony J. Hornfeck Service Award, the 2014 Dr. Bismal Bose Energy
Systems Award, the 2011 Industrial Electronics Magazine best paper award
and the Third Prize paper award by the Industrial Power Converter Committee
at ECCE 2012, 2012. He is senior member of IES AdCom. In 2013 he
has been elevated to the IEEE fellow grade with the following citation “for
contributions to grid connection of renewable energy systems and industrial
drives”.


